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Introduction 

Consider an Ocean Bottom Cable (OBC) prospect.  A subset of one swath of such a prospect is shown in 

Figure 1, an array of just 16 detectors (geophysical receivers, which, in this case, happen to be coupled 

with acoustic sensors) and 2533 orthogonally-fired shots.  Depending on offset and water depth, the onset 

of seismic energy may arrive via the water column or through one or more refractive layers.  Typically, 

the velocity of refracted energy may vary vertically (with depth) either within one refractor or between 

successively deeper, faster refractors.  Consider that in this prospect velocity may also vary laterally (in 

horizontal space) with, for example, velocities in the north-west being faster than in the south-east.  This 

situation may be less typical, but it does often occur.  A first break is a measure of the travel time of the 

onset of seismic energy from a source to a detector.  Because sources and detectors are distributed widely 

in a pattern throughout the prospect, travel paths may vary in offset (distance between source and 

detector) and in horizontal space (from north to south, north to north, south to south, and so on).  The 

shallower the water, the more likely is the onset of energy to be refracted.  The longer the offset, the 

more likely a deeper, faster refractor may be involved.  The more north-easterly the travel path (in this 

example), the faster the velocity will be.  Ignoring the effects of vertical and lateral velocity gradients 

(that is, assuming travel times are linearly related to distance traveled) will introduce biases in 

coordinates computed with a simple, least-squares, first-break positioning algorithm.  This paper 

describes two methods of dealing successfully with these and other problems.   

 

Ocean-Bottom-Cable Positioning 

Due to various geophysical advantages (not discussed in this paper), OBC seismic surveys are gaining 

popularity in water depths down to 150 meters and perhaps more. Source positioning in OBC is similar in 

technique and quality to source positioning in deep-water streamer surveys.  It basically consists of 

Global Positioning System (GPS) receivers on the source array.  On the other hand, detector positioning 

techniques are less-widely standardized in OBC than in land or deep-water streamer surveys.  Three 

techniques are common in the industry: (1) recording and using the drop coordinates of the detectors, (2) 

deploying high-frequency acoustic sensors attached to all or some of the detectors and positioned by a 

“pinging” survey independent of the seismic survey and (3) using multiple occasions of the onset of 

seismic energy (first breaks) as surveying observations in a positioning algorithm.  A combination of first 

breaks and acoustics is also possible.   

 

Advantages and Disadvantages 

Since drop positions must be recorded anyway to assure that the actual detector location bears some 

resemblance to the planned location, this technique is the cheapest and easiest to implement.  In shallow 

water the detector drop position can be close to the resting position.  But in deeper water this is not 

always likely due to currents and drop trajectories.  On the other hand, ancillary, high-frequency acoustic 

systems are provided by a number of vendors.  Acoustic surveys can be quite accurate within the 

limitations of known detector depth, known velocity of acoustic propagation in water (especially 

considering thermal layering), an adequate number of pings in good geometry, multi-path (surface 

“ghosts”) and signal reception (which can be obscured by vessel noise or muddy bottoms).  

Unfortunately, acoustic positioning is expensive (extra equipment) and operationally time consuming.  

Limiting the expense (e.g. interpolating detector coordinates between fewer acoustic sensors) or the time 

(e.g. pinging less) has a profound impact on the precision and reliability of detector coordinates when 

using acoustics.  Alternatively, first-breaks can be picked by any number of automated methods that 

choose a significant change in the amplitude or inflection of the arriving, perhaps-preconditioned seismic 

energy.  Automated picking can be enhanced with neural networks, or troublesome picks can be made by 

hand.  The time of a first-break pick can be related to distance.  Distances can be processed in a 
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positioning algorithm.  First-break positioning potentially combines the cost advantages of drop positions 

with the accuracy of acoustics.  In a seismic survey, the marginal cost of picking and processing first 

breaks is low since the personnel, software and seismic data are already on the job to reposition the swath 

immediately after shooting.  Although each first break is a crude observable (good to plus or minus 2-6 

milliseconds or 3-9 meters, or worse, in a random sense), we enjoy an abundance of observations, 

especially when refracted energy is processed.  (Limiting first-break picks to water arrivals severely 

limits the number of first-break observations, especially in shallow water.)  Laws of statistical error 

cancellation in a large sample of random observations readily confirm that acoustic-quality results are 

possible with first breaks.   

 

Systematic Errors 

First-break errors are not only random, however.  Systematic first-break errors may be caused by the 

geometry of the source array, instrumental delay in the seismic recorder, different definitions of the onset 

of energy in different picking algorithms, different velocities of propagation in the water and the several 

refractors through which the onset of energy may arrive (vertical velocity gradient), spatial variation in 

the refractors (lateral velocity gradient) and, of course, a complex near-surface geology (a catchall for 

other, less-common factors).  A competent first-break positioning algorithm must have strategies for 

dealing with all these sources of systematic error.   

 

Global Polynomial Vertical Velocity Profile 

The geometry of the source array is easily compensated with simple, albeit tedious, programming since 

all the relevant factors are known. The use of a vertical velocity polynomial is an effective and automated 

way to deal simultaneously with instrumental delay, the definition of the onset of energy and the 

existence of a vertical velocity gradient.  The polynomial fits all offsets to all pick times in the swath 

being processed before sending pick time distances to the adjustment algorithm.  Offsets are derived by 

“inversing” GPS source and detector drop coordinates, that is, by determining the Pythagorean distance 

with a little analytical geometry.  The offsets are revised upon each iteration of the algorithm as 

coordinates are refined.  Setting the order of the polynomial to two plus the number of travel paths (water 

and one or more refractors) is generally effective.  The zero-order coefficient of the polynomial absorbs 

instrumental delay and any delay in the definition of the onset of energy in the picker.  The higher order 

terms model global vertical velocity of propagation as a function of offset.   

 

Figure 1 shows the real-data swath subset used for illustration in this paper.  Among the possible 40,528 

picks among all combinations of sources and detectors, 23,547 picks fall within a 1,500-meter offset 

limitation from the drop positions of the detectors imposed for convenience and to balance the geometry 

in processing.  Notice that this swath was shot around an obstruction, an excellent application of OBC.  

Figure 2 shows a plot of picks (the dots) in milliseconds on the X axis versus offset in meters on the Y 

axis before repositioning.  Although offsets will change as the algorithm iterates, pick times are fixed.  

(Of course, re-picking with different automated methods or manual intervention is an option.)  Figure 3 

shows a well-fitting, 4th-order  polynomial computed for these data.  Notice the small offset at time zero 

that models both instrumental delay and the characteristic delay or anticipation of the picking method 

used.  Notice also that pick times can be converted to pick time distances by reading them off the plot or, 

more efficiently, by substituting them into the polynomial, which takes the general form: 

 

Eq 1  ptd c c pt c pt c pt c ptn

n
= + ⋅ + ⋅ + ⋅ + + ⋅0 1 2

2

3

3
K  

 

where ptd is pick time distance in units of distance, pt is pick time in units of time and n is the order of 

the polynomial.  The coefficients c0 through cn are estimated by least squares.  Differentiating this 

polynomial with respect to time provides an equation for velocity as a function of pick time.  This form 

of the polynomial is stable numerically up to about the fifth order, depending on various factors, and this 
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is generally adequate for most geological conditions.  Reformulating the equation with Chebyshev 

polynomials allows numerical stability up to higher orders with equivalent results (for equivalent orders), 

if desired.  But differentiation in the Chebyshev case is more difficult to interpret.   

 

Fitting these same data with a first-order polynomial (linear regression) and repositioning yields Figure 4, 

a plot of pick time distance residuals in meters (the dots) versus pick times in milliseconds.  A residual is 

also known as the C-O, or the computed minus the observed.  It is the finally-computed offset (as defined 

above) minus the pick time distance on the final iteration of the positioning algorithm.  The trend as a 

function of pick time is obvious.  Figure 5 is the equivalent residual plot using a fifth-order polynomial.  

Notice that the higher-order polynomial eliminates most of the trend and significantly reduces the 

average residual.  Since predicted error (precision) is a function of the average residual, precision is also 

enhanced.  Geodesists define predicted error as the error ellipse scaled by the variance factor.   

 

Figure 5, which exhibits the benefit of modeling the global vertical velocity gradient, also has important 

implications for the efficacy of any outlier rejection scheme implemented in the processing algorithm.  

Because outlying picks (blunders, spikes, faulty data outside the normal, random population of 

acceptable picks) can pollute a least-squares algorithm, they must be rejected.  It is easy to see in Figure 

5 that a rejection tolerance of plus or minus 35-40 meters of residual will separate the inliers from the 

outliers.  Imposing such a tolerance without the global vertical velocity model (as in Figure 4) will 

certainly lead to the rejection of good data.  Real-world picks can be worse than those in this example.  

Of course, more sophisticated, statistically-based outlier detection schemes (such as the Delft method) 

can be implemented (ref. Cross).   

 

Lateral Velocity Gradient 

A lateral velocity gradient is a variation in velocity as a function of position in a geological field.  

Different than anisotropy, it may be uniform in all directions at a specific point.  (A lateral velocity 

gradient behaves like scale factor in what cartographers refer to as a conformal map projection.)  It may 

be caused, for example, by a greater compaction of sedimentation as one moves farther offshore. Since 

the refracted energy used in OBC first-break positioning primarily travels through the recent sedimentary 

layers, a lateral velocity gradient may sometimes be a factor in positioning results.  A simple least-

squares algorithm will give erroneous results in the presence of a lateral velocity gradient, with 

coordinates biased in the direction of the gradient.   

 

A possible lateral velocity gradient must be modeled in a competent first-break pick positioning 

algorithm.  One way is to compute source-specific and detector-specific velocity scalars in independent 

gathers by least-squares estimation and then to apply them to the pick time distances before positioning.  

Another is to rewrite the positioning observation equation to include spatial variation in velocity.  The 

coefficients of the velocity model are then solved in a network adjustment.  Appendix A details this 

more-rigorous approach and also discusses the computational benefits of Helmert blocking in this 

application.  Figure 6 represents the lateral velocity gradient computed by this method for the same real 

data example as depicted in the previous figures.  Notice the gradient from north-west to south-east, the 

direction of this swath subset.  The peaks in the north-east and south-west are artifacts of extrapolating 

the quadratic surface into territory unconstrained by real data in this plot.   

 

Helmert Algorithm 

A flow diagram of the Helmert algorithm, which includes both vertical and lateral velocity gradient 

modeling, is given in Figure 7.  Geometry permitting, the algorithm can be used to refine detector or 

source coordinates, or both.  For illustration, I consider only detector positioning in this paper.  The 

algorithm is iterated until the final coordinates differ from the coordinates on the last iteration by some 

defined convergence tolerance.   
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Numerical Comparisons 

A first-break positioning algorithm employing vertical and lateral velocity-modeling techniques can be 

validated in three ways: (1) by the processing of simulated (synthetic) data, (2) by comparing real-data 

results with alternative systems (such as acoustics) and (3) by splitting the first-break data into 

independent samples either randomly over all offsets or by offset into nears and fars.  Data splitting 

results are compared for the Helmert algorithm only in the two tables that follow.  The positioning results 

from independent first-break samples chosen over the entire offset range compare exceedingly well, 

specifically within the predicted error of the algorithm.  It is a greater challenge to get agreement between 

exclusive offset ranges, that is, between the nears and the fars.  The comparisons that follow will 

concentrate on this kind of data splitting because it has profound implications for modeling a final error 

source mentioned in the conclusion of this paper.  Note that data splitting compares results computed 

from completely independent samples of first-break picks, that is, no shared observations.   

 

Figure 8 is a residual plot of data simulated with both a vertical and a lateral (north-south) velocity 

gradient and processed in a least-squares algorithm that does not model these gradients.  A normally 

distributed random error of 4 milliseconds (one sigma) is added to the simulated picks.  The picks are 

then rounded to the nearest 4 milliseconds to emulate a commonly-used sampling interval that produces 

excellent positioning results.  Direct water arrivals and three distinct refractors of different thickness are 

programmed into the simulator.  A linear lateral velocity gradient in the Y coordinate only was 

programmed into the simulator to modify the simulated picks.  The effect of the vertical gradient is 

obvious in Figure 8; the lateral gradient cannot be seen in this plot.  Since the velocity in each refractor is 

constant throughout its thickness in this version of the simulator, the refractor “breaks” are quite distinct.  

This sometimes occurs similarly in nature.  By comparison, notice that the real data of Figure 4 indicates 

a velocity variation within its one or more refractors, that is, smoother transition over the offset range. 

 

 

 

 

 

 

 

 

Table 1: Simulated-Data Results minus Truth 

Algorithm Offset Range Mean ∆X SD ∆X Mean ∆Y SD ∆Y 

LS (no gradients) 0-1500 m 0.15 m 0.67 m -13.32 m 0.58 m 

LS (no gradients) 0-900 m 0.08 m 0.86 m -4.63 m 0.64 m 

LS (no gradients) 900-1500 m 0.16 m 0.65 m -19.11 m 0.76 m 

LS (vertical gradient only) 0-1500 m 0.15 m 0.68 m -13.65 m 0.55 m 

LS (vertical gradient only) 0-900 m 0.07 m 0.87 m -4.63 m 0.65 m 

LS (vertical gradient only) 900-1500 m 0.21 m 0.61 m -18.73 m 0.76 m 

Helmert (both gradients) 0-1500 m 0.21 m 0.47 m 0.16 m 0.53 m 

Helmert (both gradients) 0-900 m -0.23 m 0.73 m 0.05 m 0.60 m 

Helmert (both gradients) 900-1500 m 0.08 m 0.85 m  -0.31 m 0.92 m 

Helmert (both gradients) fars - nears 0.31 m 1.19 m -0.36 m 1.08 m 

 

Table 1 gives the results of processing these simulated data with three algorithms: (1) Least Squares (LS) 

with no velocity gradients modeled, (2) Least Squares (LS) with just the vertical velocity gradient 
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modeled and (3) Least Squares (Helmert) with both vertical and lateral velocities modeled and using the 

Helmert-blocking technique for computational efficiency as described in Appendix A.  The comparisons 

in Table 1 are with the true coordinates of the simulator.  Notice that offset ranges are in meters for the 

simulated picks since true coordinates are known.  Notice that the results of algorithms (1) and (2) are 

comparable, that is, that the modeling of the vertical velocity gradient does not appear to offer any 

benefit.  This result is largely a consequence of the balanced geometry of the detectors in the simulator.  

The distribution of sources is such that there is an even distribution of offsets over all azimuths, a 

consequence of the orthogonal shooting style programmed into the simulator.  In-line shooting does not 

offer as much of this benefit and, consequently, modeling the vertical velocity gradient becomes more 

important.  Notice that discrepancies with truth are negligible in the X coordinate, but significant in the Y 

coordinate for the LS algorithms without a lateral velocity model.  All of the linear gradient was 

programmed into the Y coordinate and that's where it shows up in the results.  For the LS algorithms 

agreement with the truth is best for the near offsets.  Less offset produces less effect of a possible lateral 

velocity gradient, but limiting offset limits precision (predicted error) and may increase susceptibility to 

other possible error sources in nature not modeled in the simulator.  Notice finally that the Helmert 

algorithm with a lateral velocity model provides negligible discrepancies with the truth over all offset 

ranges.  These Helmert results compare favorably with predicted coordinate errors implied by the quality 

of the simulated picks.   

 

 

 

 

 

 

 

 

 

 

 

Table 2: Real-Data Results minus Acoustics 

Algorithm Offset Range Mean ∆X SD ∆X Mean ∆Y SD ∆Y 

LS (no gradients) 0-900 ms 5.18 m 3.59 m -2.56 m 3.90 m 

LS (no gradients) 0-470 ms 1.55 m 1.49 m -0.87 m 2.68 m 

LS (no gradients) 470-900 ms 7.05 m 2.88 m -3.05 m 3.65 m 

LS (vertical gradient only) 0-900 ms 5.69 m 2.39 m -2.50 m 3.09 m 

LS (vertical gradient only) 0-470 ms 1.52 m 1.61 m -0.84 m 2.43 m 

LS (vertical gradient only) 470-900 ms 7.01 m 2.88 m -2.95 m 3.62 m 

Helmert (both gradients) 0-900 ms 1.78 m 2.58 m -1.20 m 2.25 m 

Helmert (both gradients) 0-470 ms 1.15 m 1.68 m -1.46 m 2.23 m 

Helmert (both gradients) 470-900 ms 2.23 m 2.82 m -1.14 m 2.62 m 

Helmert (both gradients) fars - nears 1.08 m 2.26 m 0.32 m 2.03 m 

 

Table 2 gives the results of processing the real data considered in Figures 1 through 6 with the same three 

algorithms used in Table 1.  Notice that offset ranges are in milliseconds, a consequence of a different 

processing flow in the seismic system since true coordinates are not known.  The comparisons in Table 2 

are with the results of the acoustic system deployed on the job.  Due to its own, very-different error 

budget, these acoustic results cannot be considered the absolute truth, as is the case with the simulated 
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comparisons. Although the near-offset picks do well in the LS algorithms (which do not model the lateral 

velocity gradient), the far-offset picks compare poorly with acoustics.  By contrast, the Helmert algorithm 

is effective over all offset ranges.  The comparisons of the fars with the nears using the Helmert 

algorithm (last row) are as good as either against the acoustics.  This may imply that the acoustics are 

biased at the 1-2 meter level.  There are many factors that could have caused this.  For example, a small 

but systematic delay between the pinging event and the logging of the GPS coordinates was discovered in 

the acoustic recording software in this prospect.  Although a fix for this delay was made, any uncorrected 

effect would be in the in-line direction as revealed by the Helmert comparisons of Table 2.  Our objective 

is to find and extirpate every possible source of error in any deployed positioning system.  Nevertheless, 

the comparisons between Helmert first-break processing over the entire offset range and acoustics are at 

a level acceptable for seismic processing.   

 

Conclusion 

This paper has described several sources of systematic error in first-break pick positioning algorithms 

and detailed methods for dealing with many of them.  Simulated and real data examples have been 

documented to demonstrate that excellent OBC positioning results are achievable with first-break picks 

in comparison with truth or acoustics if these potential errors are appropriately modeled.  When we are 

confident that near and far offsets produce statistically-equivalent results we have a strategy for dealing 

with the last, less-common error source, namely, a complex near-surface geology.  That strategy is to 

process as wide an offset range as is consistent with balanced geometry and a decrease in the predicted 

error of the coordinates.  By processing over, through, under and around anomalies (when, in fact, they 

exist) we stand the best chance of "averaging out" their potential effect on our final coordinates.   

 

References: 

Cross, P.A., Advanced least squares for position fixing, North East London Polytechnic, 1983 

 

Appendix A: Modeling a Lateral Velocity Gradient 

After the global polynomial regression described above models a vertical velocity gradient and converts 

pick times (perhaps in milliseconds) into pick time distances (perhaps in meters) for processing into 

coordinates by least-squares methods, a lateral velocity gradient may remain.  Such a lateral gradient may 

be approximated as a quadratic surface, that is, a two-dimensional, second-order polynomial in spatial 

coordinates over the prospect area, as follows: 

 

Eq A1  pvt b b x b y b x b y b x y= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅0 1 2 3

2

4

2

5  

 

where pvt is "point velocity trend", x and y are the grid coordinates of a particular point in the prospect, 

and b0 through b5 are the polynomial coefficients common to the entire swath of OBC data being 

processed.  Solved in a simultaneous, least-squares algorithm, these coefficients, which are a function of 

all picks among the many source and detector points in the swath, provide a uniformly-varying gradient 

that adequately models reality.   

 

How is such a least-squares algorithm constructed?  First, we need to write an observation equation that 

links our known with our unknowns.  We know the pick time distance, which is a produced by our global 

regression.  We need to refine our coordinates (x, y) and our polynomial coefficients (b0 through b5).  If 

the possible existence of a lateral velocity gradient were not an issue, our observation equation would be 

that normally used in positioning algorithms, namely: 

 

Eq A2  ptd x x y y= − + −( ) ( )2 1

2

2 1

2
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where ptd is the pick time distance and the coordinates of p1 (x1, y1) or p2 (x2, y2) or both are unknown.  

For simplicity of exposition we assume that only the detector coordinates are unknown, but the method 

can be generalized.  To compute the coefficients of the design matrix, discussed later, the non-linear 

observation equation for ptd must be linearized by expanding it about a seed position in a Taylor's series 

and preserving only the first-order terms, a common procedure in geodetic adjustments.  Effectively, this 

requires partial differentiation with respect to the unknown parameters, in this case each of the detector 

coordinates.  Coordinate seed values are substituted for the parameters to determine the coefficients of 

the design matrix for the first iteration.  Parameter values are updated in subsequent iterations until 

convergence is achieved and non-linearities are removed.   

 

Since we allow the possibility of a lateral velocity gradient, our observation equation now becomes: 

 

Eq A3  ptd x x y y V= − + −( ) ( ) / ,2 1

2

2 1

2
 

 

where V is the average relative velocity trend over the travel path of the seismic energy, a number near 

unity.  Since we have removed the effects of global static delays and the vertical velocity gradient in the 

global regression stage, we assume the travel path is effectively horizontal.   

 

Now, we must formulate an equation for V in 

terms of the coordinates of p1 and p2 and the 

lateral polynomial coefficients, some or all of 

which must be refined in the successive 

iterations of the algorithm.  In Figure A1, let p1 

be the shot and p2 be the detector.  The 

coordinate grid in x and y is shown and ds is a 

differentially small element of the straight-line 

path between shot and detector.  Of course, 

given the particular characteristics of the 

lateral velocity gradient, the straight-line path 

may not be the fastest path followed by the 

energy, but it's a useful approximation that 

simplifies the derivations to follow.  Using a 

common procedure in calculus, we redefine ds 

as follows: 

 

Eq A4  ds dx dy dy dx dx
y y

x x
dx= + = + ⋅ = +

−

−
⋅( ) ( ) ( / ) ( )2 2 2 2 1

2 1

21 1  

 

The last step is possible because dy/dx is the slope of the line from p1 to p2.  To further simplify the 

mathematics, we now redefine the lateral velocity as its inverse, namely: 

 

Eq A5  pvt a a x a y a x a y a x y= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅1 0 1 2 3

2

4

2

5/ ( ),  

 

that is, we actually model the inverse of a lateral velocity gradient.  One is easily mapped into the other.  

Except for mathematical convenience, it is immaterial which approach we take.   

 

Now, we apply some basic physics to solve for the relative time it takes for energy to travel from  p1 to 

p2, namely a reformulation of distance equals velocity times time: 

 

 

ds 

p2 (x2, y2) 

Y 

X 

p1 (x1, y1) 

Figure A1 
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Eq A6  t s v= / ,  

 

where t is time, s is distance and v is velocity.  Expressed differentially, this is: 

 

Eq A7  dt
v

ds
pvt

ds= ⋅ = ⋅
1 1

,  

 

where pvt is understood to vary over the path from p1 to p2 according to Eq A5 above.  Total time is 

found by integrating this function from p1 to p2.  This integration is simplified by another substitution for 

the slope-intercept equation of the line between p1 and p2, over which we later integrate, as follows: 

 

Eq A8  y
y y

x x
x

x y x y

x x
=

−

−
⋅ +

⋅ − ⋅

−
( )2 1

2 1

2 1 1 2

2 1

 

 

I call the right-hand expression of Eq A8 yterm.  It is a function of x and the coordinates of the endpoints 

of the line, which we can treat as knowns in this context.  Making all the above substitutions, our integral 

in the variable x is now:   

 

Eq A9  T a a x a yterm a x a yterm a x yterm
y y

x x
dx

x

x

= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅ ⋅ +
−

−
⋅∫ ( ) ( )0 1 2 3

2

4

2

5
2 1

2 1

2

1

2

1 , 

 

where T represents the total relative time it takes energy to travel from p1 to p2.  This integral is easily 

solved analytically using commercial mathematics software.  The answer is: 

 

Eq A10  T S mterm= ⋅ , 

 

where S is the Pythagorean distance between p1 and p2 and mterm is a "magic" term that comes up again 

in these computations, namely: 

 

6 3 3 2 2 2 2

6

0 1 1 2 2 1 2 3 1

2

1 2 2

2

4 1

2

1 2 2

2

5 1 1 2 2 1 2a a x x a y y a x x x x a y y y y a x y y x y y+ + + + + + + + + + + + + +( ) ( ) ( ) ( ) ( ( ) ( ))

 

Now, since T is total relative time, the average relative velocity V over S is as follows: 

 

Eq A11  V
S

T

S

S mterm mterm
= =

⋅
=

1
 

 

Substituting into our observation equation (Eq A3) that contains coefficients of a lateral velocity 

gradient, we have: 

 

Eq A12  ptd x x y y mterm= − + − ⋅( ) ( )2 1

2

2 1

2
 

 

In the case of detector positioning, the coefficients of our design matrix are the partials of ptd with 

respect to the two detector coordinates and the six polynomial coefficients.  Here a simplifying 

assumption and commercial mathematics software come to the rescue.  The simplifying assumption is 

that the detector coordinates in mterm can be held fixed while differentiating with respect to those 

coordinates in the other term, the Pythagorean distance, S.  Coordinate errors in mterm have only a small 
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effect on the velocity gradient and, if ignored, their effect will be refined as the algorithm iterates to 

convergence.  Our eight design matrix coefficients are:  

 

Eq A13  
∂

∂

( )

( )
( ) /

ptd

x
x x mterm S

2

2 1= − ⋅  

 

Eq A14  
∂

∂

( )

( )
( ) /

ptd

y
y y mterm S

2

2 1= − ⋅  

 

Eq A15  
∂

∂

( )

( )

ptd

a
S

0

=  

 

Eq A16  
∂

∂

( )

( )
( ) /

ptd

a
x x S

1

2 1 2= + ⋅  

 

Eq A17  
∂

∂

( )

( )
( ) /

ptd

a
y y S

2

2 1 2= + ⋅  

 

Eq A18  
∂

∂

( )

( )
( ) /

ptd

a
x x x x S

3

1

2

1 2 2

2 3= + ⋅ + ⋅  

 

Eq A19  
∂

∂

( )

( )
( ) /

ptd

a
y y y y S

4

1

2

1 2 2

2 3= + ⋅ + ⋅  

 

Eq A20  
∂

∂

( )

( )
( ( ) ( )) /

ptd

a
x y y x y y S

5

1 1 2 2 1 22 2 6= ⋅ + + ⋅ + ⋅  

 

The equations above are sufficient to solve for a quadratic, lateral velocity gradient simultaneously with 

all detector coordinates in a network adjustment by anyone skilled in constructing such algorithms.  

Consider a small swath with 4,000 source locations (shots) and 200 detectors and 20,000 first breaks 

recorded within acceptable offset ranges, a modest 100 picks per detector. Ignoring for simplicity the 

necessary complication of observational uncertainties and the "weight" matrix, the unweighted form of 

the matrix equation is the following: 

 

Eq A21  r H p e= ⋅ + , 

 

where r is a 20,000 by 1 column vector of residuals (computed minus observed pick time distances), p is 

a 406 by 1 column vector of unknown parameters (200 detectors times 2 coordinates each plus 6 

polynomial coefficients), e is a 20,000 by 1 column vector of unknown errors to be minimized by the 

least-squares constraint and H is 20,000 by 406 design matrix of coefficients as computed above 

(Equations A13 through A20).  H will be very sparse.  Each of the 20,000 rows of length 406 will consist 

of just eight non-zero elements, one each for the two coordinates of the involved detector in the columns 

defined by their rows in p and six for the polynomial coefficients, always in the same columns.  Because 

the lateral velocity gradient is common to the entire swath, i.e. the polynomial coefficients are 
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represented in every observation equation, it is necessary that all detectors be solved in a simultaneous 

network adjustment.  The unweighted least-squares solution is: 

 

Eq A22  p H H H r= ⋅ ⋅ ⋅
−( ' ) '1

, 

 

where H' is the transpose of H.  Due to the need to remove the non-linearities of the observation equation 

and the approximations made in deriving the partials for the polynomial coefficients in the design matrix, 

the algorithm must be iterated to convergence.  Due to the size and sparsity of the design matrix, 

computation will be slow.   

 

In my implementation the lateral velocity model is solved much more efficiently by means of a Helmert-

blocked least-squares algorithm.  Helmert blocking is a least-squares technique that is well known in the 

geodetic community (ref. Cross).  Generally, Helmert blocking is used to simplify continental geodetic 

adjustments by defining the common block to consist of the coordinates of geodetic stations along 

country borders and the several local blocks to consist of the interior geodetic points of the several 

countries.  By blocking the adjustment, computational efficiencies are achieved and the confidentiality of 

the interior coordinates are preserved by the respective countries.  My implementation changes the usual 

procedure by defining the common block to consist of the coefficients a0 through a5, which are, indeed, 

common to all sources and detectors, and the numerous local blocks to consist of the coordinates of the 

detectors or sources or both and, optionally, a static offset term for the detectors, if desired.  Sparsity is 

eliminated and computational efficiency is greatly enhanced.  The details of the Helmert reformulation of 

this network least-squares problem are complex and beyond the scope of this paper.  The reader is 

referred to Cross (pages 115-124).   

 

The Helmert solution is also iterative.  Observations and drop coordinates are globally regressed to 

compute pick time distances for each pick time with the global vertical velocity gradient removed.  Using 

nominal source and detectors coordinates and the pick time distances, the lateral velocity model 

coefficients are computed.  Using the lateral velocity model coefficients and some intermediate matrix 

products, the coordinates of the sources or detectors or both are updated.  If the difference between the 

nominal coordinates and the updated coordinates is less than some defined convergence tolerance, we are 

done.  If not, then updated coordinates replace nominal coordinates and updated lateral velocity 

coefficients replace nominal coefficients on the second iteration and the process repeats.  Iteration 

continues until the difference between the output coordinates and the input coordinates for a given 

iteration is less than the defined convergence tolerance.   
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Figure 1: OBC Swath Subset Analyzed in This Paper 
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Figure 2: Offset Versus Pick Time Before Repositioning 
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Figure 4: Residuals Versus Pick Time with First-Order Polynomial 
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Figure 3: Fourth-Order Transverse Polynomial Fit to the Data 
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Figure 5: Residuals Versus Pick Time with Fifth-Order 
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Figure 6: Quadratic Lateral Velocity Surface 
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Figure 7: Helmert Algorithm Flow Diagram 

Figure 8: Simulated Data with First-Order Polynomial 
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